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LE’ITER TO THE EDITOR 

A transport theoretic approximation method for the 
monoenergetic neutron transport equation 

A Sengupta 
Nuclear Engineering and Technology Programme, Indian Institute of Technology, Kanpur, 
India 

Received 15 March 1982 

Abstract. This letter introduces the basic features of a proposed transport theoretic 
approximation of the one-speed neutron transport equation. The method utilises the 
exact results of Case, and retains the use of the eigenfunctions r # 4 p )  together with a 
properly constructed rational approximation &,(CL) of the singular eigenfunction & ( p )  as 
the complete set of basis functions. A major contribution of this work is the adaption of 
Case’s orthogonality relations to this basis, I&&), &(p)},  for obtaining the desired 
solution. 

In this letter, we present the basic features of a novel scheme for obtaining an 
approximate solution of the one-speed neutron transport equation utilising the stan- 
dard exact results of Case and Zweifel(l967). While a detailed report will be published 
separately, it is our opinion that the method is of sufficient interest and generality to 
merit a short communication here. 

We are concerned with the solution of the one-speed equation 

for full- and half-range boundary conditions. For this, we use Case’s solution in 
standard notation (Case and Zweifel 1967) 

rib, P )  = ao+ exp(-x/vo)4o+(l.c) 
1 +I, A ( v )  exP(-xI~)4Y(P) dv p a 0  x 2 0  (26) 

for the full- and half-range problems, respectively. Here vo satisfies 

CY0 vo+1 -1n-- -1  
2 vo-1 (3) 
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and the Case eigenfunctions are 

The necessary and sufficient conditions for the determination of the constants ao+ and 
A ( v )  are the orthogonality integrals (Case and Zweifel 1967) 

1 I, cL4:*(cL) dcL =No* ( 6 ~ )  

c~4~(c~)4&) d/A = N ( ~ ) a ( v  - v’) v, ;’E (-1, 1) (6b) 

where 
3 

C Y 0  c 1 No*=*- - 
2 L : - 1 - d  

for the full-range problem, and when v, v’ E (0, l), 
1 

1 

I, 
I, 
lo 
I, 
b 

1 

1 

1 

for the half-range case. Here (Case and Zweifel 1967) 

1 
W-cL) x(-p) = p + l/X(O) 

with 

and 

X ( 0 )  = l / ( v o J l  -c) 
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Also, 

X(-vo) = aomwvo) 

aom = -exp(-2zo/vo), 

where 

zo being the extrapolated end point. 
Our solution procedure starts by recognising (Ganguly and Sengupta 1980) that 

one should, strictly speaking, use the exact vo and q50&) in the asymptotic part of 
the solutions (2). Unlike in Ganguly and Sengupta (1980), however, we do not replace 
the transient integral by utilising the roots of the PN approximation, nor use modified 
Marshak boundary conditions to obtain the coefficients in the solution. Instead, we 
reason as follows. 

(i) The discretisation of v E (-1,l) (or v E ( 0 , l ) )  should be done such that these 
roots, vi, j = 1,2, . . . are consistent with the particular choice of vo. The PN approxima- 
tion has this desirable property, as all its N + 1 vi are solutions of a polynomial equation 
of degree N + 1 ,  g N + l ( V ) = O .  In contrast, by requiring the asymptotic vo to satisfy 
equation (3) and the transient vi the equation gN+l(v)  = 0, the TPN procedure (Ganguly 
and Sengupta 1980) violates this property. 

(ii) The natural basis functions for the solution of the transport equation are the 
Case eigenfunctions ~ $ ~ + ( p ) ,  Cb0-(p), q 5 & ~ ) .  Any other basis such as the {P,(p)}r=o 
(as in the PN case), or a combination {q50+(p), q50-(p), {Pn(p)}} (as in the PN case), 
is likely to be unsatisfactory. 

(iii) By the very nature of the eigenfunctions, a rational function approximation 
is expected to be superior to a standard polynomial approximation. 

In view of the above, let &,,((CL), an approximation of q5u(p), have the form 
L 

l = O  
&Ad = c al(v)m(LL)+RL(v, CL) (11) 

where { .n~(p)};"=~ is a complete set of orthogonal polynomials, and R L ( v , p )  is the 
remainder, or error, in representing q5,(p) by a finite linear combination of the r I ( p ) .  
This remainder is expressed as a rational function, i.e. as 

Alternatively, we can also write 

For the present problem we can choose the .n,(p) to be either the Legendre or 
Chebyshev polynomials and observe that it is necessary to have = &(-p) .  If 
now the polynomial expansion of q5,,(p) is of the form 

m 

it is possible to find the a, and 6, in terms of the (known) g,(v). For example if 
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m 

=g8 +%go+$ C bl(gI+I +giI-d i = 1 , 2 , .  . . , M + N . .  . , 
1-1 

a, = 0, i > N and bj = 0, j > M, as the set of equations for determining the a, and 6,. 
The first N + 1 equations relate a, to b,, while the next M homogeneous equations 
solve for bi. Note that the corresponding equations when r,,(p) = P , b )  are more 
difficult to obtain as, unlike in the Chebyshev case, there is no simple relation for the 
product Pn(p)Pm(p). However, unlike in the P,, case, integration of (13) over p with 
r,, ( p )  = T,, ( p )  produces the infinite series 

2(gO/2-g2/3-g4/15-g6/35-’ ‘1 
where 

go(v)=[2/r( l  -v2)”*]A(~) ,  gl(v) = v(go-c), 

gn+l(v) +gn-l(v) = 2vgn(v), 

and the condition j!l &,(k) d p  = 1 is not as simply satisfied. Though this is the standard 
procedure for obtaining a rational fraction approximation to a given function, one of 
the principal contributions of this work is to use the constraints imFosed by the 
orthogonality conditions, i.e. eqiiaticns (6) and (7), in addition to equation (14), for 
obtaining the parameters {a,} ana {b,} 

In accordance with the above, for the full-range case, equation (6a )  is aulomatically 
satisfied, and for (6b)  we write 

any other combination of the eigenfunctions being contained in the above. In order 
to discretise the interval (-1, 1) from the above integrals, it is necessary to replace 
S(v  - v’) by a suitable representation, which in the present case we obtain from its 
expansion in terms of the complete set {c$~+, &-, &}, i.e. from the Green function 
jump condition 

by neglecting the transient integral?. Therefore 

t This is the simplest possibility. Other more realistic representations of the delta function from the jump 
condition are possible. 
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The three orthogonalitydr constraint-integrals are now evaluated using equation 
(4) and the assumed form of &,,((CL), expression (18), with v = P',  being employed on 
the right-hand side of (17). The number of parameters retained in &(p)  is taken to 
be both necessary and sufficient for a unique solution to be obtained in terms of g,(v) 
from the orthogonality constraints and the first N + 1 non-homogeneous equations of 
the set (14). This implies that &&) contains only ao, a l ,  . . . , aN and bl, b2, b3. Finally 
the normalisation, 

yields the required discretisation of v E (-1, l), consistent with the choice of YO 

satisfying equation (3) and with all the orthogonality conditions needed for a complete 
solution of the problem. 

In the case of a half-range problem, a simple but remarkably accurate expression 
for W ( p )  is first developed for use in the orthogonality relations (7). From equations 
(8) and (lo), we write for W ( p )  

c p v o G + p 2  

mp) = 2R(1- c )  vo + p 

where fl is taken to be a constant. With this 6 ' (p ) ,  equations (7e) are evaluated to give 

C 
(Icvo)2(ac1 + C2) = -($cvo)2x(vo) 2R(1-c) 

and 

where 

1 v0 +--1n- 1 
c2 = 

1 -- 1 c1= 2vo(vo- 1) 2cv; 2(v0-1) 2cvo vo-1 

YO +ln- 
3 -- 1 

Dz = 
1 1 D1=-- 

2cv; 2vo(vo + 1) 2(vo+l) 2cvo vo-1' 

If R is very nearly constant, which is assumed to be the case in equation (19), then 
the solutions of the above two equations for R, 0, and fl- respectively say, will be 
nearly the same. Calculations show that for c = 0.2, a+ = 0.980237, Q- = 0.983046; 
c = O S ,  R+=0.959663, R-=0.959432 and for c =0.9, R+=0.938081, R-= 
0.937203. To take care of this weak dependence of R on p to a satifactory degree, 
we use the average of Q+ and R-, i.e. let 

n = $(a+ fa-) (20) 

in equation (19). As an independent check on the utility of this w ( p )  in evaluating 
integrals of the type (7), we calculated 
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to be 

where 

4 n even 
n odd 

2 =-(-+-+- 1 vo vo 
n - 1  n - 3  n - 5  vo In [ ~ ~ / v i -  I)"'] 

and compared it with the exact value &vO. The ratio of the approximate to exact 
integrals for different c are 0.999874, 0.999594, 0.999530, 0.999693 and 0.999832 
for c = 0.2, 0.4, 0.6; 0.8 and 0.9 respectively. Thus the very good accuracy of w ( p )  
is verified. 

With this constant SZ, it is also possible to obtain a first iterant of a(-@) from 
equation (9) to be 

(21) a(-@) = 1 - Z C V i 4 . n  

where 

1 + vo vo- 1 1+P  u = a l l n -  +az ln-  +a31n- 
vo vo CL 

C C 
a1 = a2 = 

2vo(vo-w)(1 - c )  2vo(vo+C1.)(1 - c )  

C 
a3=X2(0)- (1 - c ) ( v ; -@2) '  

Because successive iterations on equation (9) converge extremely rapidly (Case and 
Zweifel 1967), equation (21) with equation (20), yields an X ( - p )  from equation (8) 
that differs by no more than 1-2% from its true value for all magnitudes of p and c. 
In comparison, the X function calculated from equation (20) in place of (21), has a 
maximum error of about 4%. The above, therefore, constitutes an extremely reliable 
approximation to Case's W and X functions. 

Having obtained X(@) and W(@) ,  we evaluate the integrals in (7a) - (7d)  with the 
proper form of &(g) (as in the full range case), and for S(v - v') use the asymptotic 
component of the boundary condition for the albedo problem, i.e. 

A procedure completely similar to the full-range case then gives the constants in &((CL) 
and the discretisation of the range 0 s v s 1. The solution of equation (1) can now be 
written as a linear superposition over all the roots, for the general case, as for example by 

 CL^, CL 1 = ao+ exp(-x I V O ) ~ O + ( P  1 + ao- exp(x I ~ o ) ~ o - ( P  1 
+ CA(vj) exp(-x/vj)&,(p), 

i 

and the coefficients evaluated from the boundary conditions and use of the orthogonal- 
ity relations satisfied by the set {do* (@), &,,(@)} constructed above. 
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In concluding, we summarise as follows. We have succeeded in using q50+(p) and 
a properly constructed rational approximation &(LL) to q5&) as the basis functions 
for the solution of equation (1). These functions satisfy all the necessary orthogonality 
relations (with a suitable definition of the S function) needed for a complete solution 
of the one-speed equation, and yield the exact asymptotic solution in all cases. This 
justifies the use of the exact asymptotic form of S (v - Y’) in the orthogonality integrals 
above. The possibility of such a general solution procedure that does not use singular 
eigenfunctions has become more significant now with the recent demonstration 
(Sengupta 1982) that the solution of the energy dependent transport equation can be 
expressed in terms of the solutions of the one-speed and slowing down equations. 
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